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ABSTRACT

The resilience of coral reefiepends othe balance betweenef growth and reef breakdown,
and th& responses to changing environmental conditions. Across the 2500 km Hawaiian
Archipelagowequantiied rates ofcarbonate production, bioerosi@ndnetaccretion at

regional, island, site, anaithin-site spatial scalemnd tested howarbonate production,
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bioerosion, and net accreticaesrespond to environmental conditicasross different spatial
scalesOverall, here werdour major outcomes from this study) bioerosion rates were
generallyhigher in the populated Main Hawaiian Islands (MHI) than the remote, protected
Northwestern Hawaiian Islands (NWHWhile carbonate production rates did not vary
significantlybetweerthe two regions; Rvariability in carbonate production, bioerosion, and net
accretiorrates was greatest at the smallest witleief spatial scaje3) carbonate production and
bioerosion‘rates were associated with distinct setswfonmental parameterand 4 the
strongest correlates ofirbonate productiomjoerosion and net accretiorates were different
between théMHI region and th&WHI region: in the MHI, the dominawcbrrelates were %
cover of macrealgae and herbivorous fish biomass for carbonate production and bioerosion,
respectively, whereas in the NWHI, the tprelatesvere total alkalinity and benthic cover.
This studyhighlightsthe need to understamadcretion and erosigorocesses as well as local

environmental conditions faredict net coral reef respassto future environmental changes.

Keywords: Spatial scale, coral reefset accretion, bioerosionarbonate production, local

variabilityplatitudinal gradients, pH, multiple stressors

1. INTRORUCTION
Worldwidegdeglines in coral cover and shifts in coral reef community congrokéive raised
concerns about reef persistence and the shifting balance between reef aancktein

bioerosion (e.g., Gardner et al. 2003, Bruno and Selig 2007, Kennedy et al. 2013). Corals and

other calcifiers (e.g. nooeral encrusting invertebrates and crustose coralline algae (CCA)) build

reefs through the productiaf calcium carbonate (CaGPskeletons, while a diverse
community of organisms bioerode reefs through grazing on (e.g., urchiregfipay and boring
into (e.g., bering sponges, sipunculids, and polychaetes) CefeOsubstratée.g., Hutchings
2011, Tribellet and Golubic 2011). Anthropogenic stresafiext the accretioerosion balance
of coral reefs at a range of spatial scales fgiobalocean acidificatiorfe.g., Hoegh-Guldberg

et al. 2007, Silbiger and Donahue 20fbyegional overfishinge.g., BrownSaracino et al.

2007, Kennedy et al. 2013) and local eutroption(e.g., Fabricius 2005, Hutchings et al. 2005,
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Le Grand and Fabricius 2011)hdse stressors threaten to shift reefs from a staiet @fccretion

to net erosion. Experimental studies on bioerosion have increasegim years, especially

those focused on the impacts of rising temperature and ocean acidification on dmextes

(see, Tribollet et al. 2009, Wisshak et al. 2012, 2013, Enochs et al. 2015, Silbiger and Donahue
2015). To predict how reefs may shift under future ocean condig@psrimental tsidies must

be contextualized witmeasurements of-situ accretionrerosion rateandacross aange of
environmental‘conditions. Threeajor factors influence accreti@rosion rates on coral reefs:

the chemical'environment, the physical environment, and biological interactionswdere,

address how each of these factors influences accetommon rates across different spatial

scales.

Shifts in‘fenvironmental conditions calterbioerosion rates througthanges in the
physiology andimetabolic pathways of bioerod8eawatepH (and related carbonate
parameters) and nutrients are the gmoups ofchemical drivers that have receivéa tmost
attention on_coral efs. For exampldyothexperimenta(Tribollet et al. 2009, Wisshak et al.
2012, Fangetwal. 2013, Reyes-Nivia et al. 2013, Wisshak et al. 2013, Enochs et al. 2015, Silbiger
and Donahuex201%)nd correlativgSilbiger et al. 2014, DeCarlo et al. 2015, Enochs et al. 2016,
Silbiger etval. 20163tudieshave demonstratetiat decreasing pkicreass bioerosion Many
studies hav@lsodemonstrated that decreasing y@ducescalcificationin corals andrustose
coralline algade.g., Hoegh-Guldberg et al. 2007kigb et al. 2008, DiazPulido et al. 2012,
Johnson and Carpenter 2012, Comeau et al. 2013)vémadfield studies bioerosiorincreased
in eutrophie“relative to oligotrophic conditions (e.g., Le Grand and Fabricius 2011, DeCat
2015) likely=due to increased food availability to filter feeding bioerodéedd studies that
examined thsimultaneousmpact of nutrients and ocean acidity moerosionhave found
different responsesver different spatial scale®eCarlo et al. 2015, Silbiger et al. 2016). In a
within-reef study (~30m) (Silbiger et al. 2014, Silbiger et al. 201&)an acidity was the best
predictor of reebioerosion when compared to nutrients, chlorophyll, temperature, depth, and
distance fram'shoré\t a largescale (~16,000 km) comparison across the Pacific Basin
(DeCarlo etwal., 2015)he positive relationship between bioerosrates and ocean acidity was
more pronouncedt sites withhighernutrient concentratian

Along with a changing chemical environment, physicaapeetersan affect the reef
carbonate budget. For examplgter movementanenhance growth aforals and other
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calcifiersthrough transport and removal of nutrients and metabolic wastes (Hearn et al. 2001) or
enhance erosion through dislodgement and abrasion (Madin and Connolly 2006). A study at
Lizard Island, a relatively protectaseét ofislandsin the Great Barrier Reef approximately 5 km
acrossfound that CCA and live coral coweas positively correlatewith wave energy

(Hamylton et.al. 2013)Conversely, ira Pacificwide study (~8000 knthat incorporated several
exposed reef systemsoral cover declined with increasing wave endifyilliams et al. 2015)

The chémical'and physical environment can also interact as water residence times influence pH
variability (Jury“et al. 2013). These studies highlight the comgiexmicaland physical
interactionanfluencingthe accretiorerosion balancat different spatial scales.

Overlaid,on a landscape of chemical and physical drivers, biological inberaelso
influence reef accretiearosion rates~or example, grazecan influence bioerosiadirectly by
incidentallyremoving CaC@ substrate while grazing for algég., Bellwood 1995, Ong and
Holland 2010) andan influencecalcificationindirectly by removing fleshy algae and relieving
competitive interactions with CC£Cebrian and Uriz 2006, Cebrian 2010, O'Leary and
McClanahanr2010, Gonzalez-Rivero et al. 20B2nthic cover can also be a major factor
affecting accretionrerosion rates. ie amount of dead substrate on a reef is directly refateadf
bioerosionurates, as bioerodereferdeadsubstrate ovedive reef(Highsmith 1981b, Hutchings
1986). Thereforeevents that negatively impact live coral, such as large storms and bleaching
events, can indirectly impacideroders.

While there have been sevenakitu studies focused on understanding controls on
bioerosionsrates and associatedcroborer communitiesehiefly at sites in Australiée.g.,

Davies andsHutchings 1983, Risk et al. 1995, Tribollet et al. 2002, Hutaktiadis2005,

Tribollet and Golubic 2005), the Caribbean (e.g., Neumann 1966, Rutzler 1975, Perry et al.
2012), and th&astern Tropical Pacifie.g., Scott and Risk 1988)}xerehave been no broad

scale studies.on accreti@nosion rates in the Hawaii Archipelagg existing studies in Hawai'i
have focused mainkyn Kane‘ohe Bay (White 1980, Tribollet et al. 2006, Silbiger et al. 2014,
Silbiger et.ali2016)Here, weexamine the patterns of carbonate production, bioerosion, and net
accretion ratesver multiple spatial scales at 29 sites across the Hawaiian Archipelago
(~2500km).There werehreegoalsfor this study 1) describe spatial pattey inrates of

carbonate productiompfimarily from the settlement of crustose coralline algd®perosion and
netaccretionon experimental blocksf dead coral substrate, late these patterns to chemical,
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physical, and biological data from long-term monitoring and remote sensing data tesidf3)
the relationships betweeatcretiorerosion rateand environmental driveereconsistentcross
spatial scalesWe use a ewly developeqiCT methodology (Silbiger et al. 2014, Silbiger et al.
2016)to measurén situ rates ofcarbonateproduction bioerosion andnetaccretion (calculated
aspercent change in volum&pm experimental blocksf CaCQ deployedacross the Hawaiian
Archipelago.n.the first large scale application of tlu€T methodwe calculate carbonate
productionratesprimarily from crustose coralline algaand bioerosion rates from borers and
grazers from an early successional community after yeaedeployment period.

2. MATERIALS AND METHODS

2.1 Study Sites=T his study was conducted at @ereefsites(8-16 m depthpacrosssix
islandgatollsinithe Hawaiian Archipelag(Fig. 1, S1,Table S). Kure Atoll (KUR), Pearl and
Hermes Atoll (RHR), Lisianski Atoll (LIS), and French Frigate Shoals (RF&tollsin the
Northwestern Hawaiian Islan@8WHI) andprotected by th®apahanaumokuakea Marine
National Monument (PMNM)one of the largesind most remote marine protected areas in the
world. O‘ahurand Maui arpopulated volcanicslands in theviain Hawaiian IslandsMH]I).
Twenty-sevenof these sitesereco4ocatedwith longterm monitoringsites maintained bthe
NOAA Coral Reef Ecosysterogram(CREP) to take advantage of pre-existing environmental
data andesearcltruise logisticsThe remainingwo sites O‘ahuKBay andMaui-A27, were
selectedvith similar depth and exposure characteristiswui-A27 was celocated with a long-
term monitoring site maintained by the Hawai‘i Division of Aquatic Resouf@&huKBay is
accessiblesfrom the Hawai'i Institute of Marine Biologye experimental design wasplicitly
hierarchicakwith n=5 replicates per site5 4ites per island/atoll, and 2 (MHI) or 4 (NWHI) sites
per region

2.2 Carbonate Production, Bioerosion, and Net Accretion: Five blocks (5 x 5 x 2.5 cm) cut
from deadPorites lobata Dana 1846collected above the high tide mark on O‘alvere
deployedateachsite forapproximately one year (Fig. S2ablle ). Each block was carefully
inspected.and any block with obvious @nasting boreholes was discarded. Blocks were then
soaked in freshwater and autoclaved to sterilize the substrate. Tveavieotedrilled into each
block for cable tiesAt each sitepne bock was attached to each of five rebar stakes instafied
the reefwithin a 5 m x 5 m area. Blockgere attached using cable ties and orienttically,
such that the end of the block wasontact with the substra€ig. S29. Because of the
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148 remoterss of our field sites, all blocks were deployed and retrieved on NOAA ships with pre-
149 determined cruise schedul®&ocks were deployed at FFS, LIS, and Psiesin JulyAugust

150 2011on NOAA cruiseHA1103 and retrievediiAugust 2012n NOAA cruiseHA1204;, at KUR
151 sitesin August 2012 otNOAA cruise HA1204and retrieved in July 201 NOAA cruise

152 SE1305; an@tO‘ahu and Mausitesin SeptembéOctober 2012n NOAA cruiseSE1207 and
153 retrieved Septembkdctober 2013vith small boat operatior@able ). While deploying

154  blocks during different years is not ideal because recruitment of bioeroderargayvertime

155 (e.g., Hutchings et al. 1992, Hutchings 2014¢, remoteness of our sites and-getermined

156 cruise schedules and logistitsde itunavoidable. A blocks weredeployed on the reédr a

157 full yearand thus the substrate was available to bioeroders and calcifiers during all four;seasons
158 all blocks were‘deployed between late July and early Octdéerecovered 143 of 145

159 deployed experimental blocks; 122 blocks had beforeafted LICT scan®f adequate quality

160 for data analysis.

161 Carbonate production, bioerosion, andawtretiorrates were calculatddr each block

162 by comparing-hefore and afteCT scansof the entire blockéSilbiger et al. 2014, Silbiger et al.
163 2016).uCTuisian Xray technology that nodestructively images the external and internal

164 structuressef solid objects, resulting in eeadimensional array of object densities. We used an
165 eXplore CT¥120 uCT (GE Healthcare Xradia, Inc) at the Cornell University Imaging Multiscale
166 CT Facility to scan blocks before and after deployment (voltage = 100kV, currentA) 50he

167 uCT was calibratwith a phantonfdensity standardjrior to running each batch of samplAs.
168 threedimensional array of isotropic voxels at 50 inesolution was generated using the GE

169 Console Software and the voxels were averaged to 18@quuhata analysis. We used a

170 thresholdof 200 Hounsfield Units to separate coral from air (Silbiger et al.. 20 ¥)umber of
171  voxels exceeding this threshold was multiplied by the voxel size (100 um)° to give the total

172 volume of CaCQ for pre- and post-deployment blocks. The anet postdeployment scans

173 were then aligned using an intendiigsed registration technigtrem the MATLAB R2014b

174 Image Processing Toolbox, converted to binary, and subtracted from one another resalting i
175 matrix of 0's, 1’s, and -1's. All positive values were new pixels added to the post-deptoyme
176 scanwhich indicatecarbonate productiomegative values were pixels that were lost and

177 indicatebioerosion and zeros meant there was no change at that pixel between the two scans. All
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values were summed analltiplied by the resolution of the scan to obtain the volume lost
(bioerosion) or gained per block (carbonate production) (Fig. S2b,c).

Prior studies highligleidthe need to analyze both carbonate produeti@bioerosion
independently (Silbiger and Donahue 2015, Silbiger et al. 2016), batcretiorrates are also
necessary founderstanding longerm reef sustainabilit{Silbiger et al. 2014). Here, we
calculatedcarbenate productiobjoerosion and neticcretion rate@he percent change in
volumerof‘experimental blocks) over the one-year deployment ltimtlee literature, arbonate
productionrateson calcium carbonate blockse typically presenteas layer thickness mm yr
!(e.g, Payri 1995, Tribollet et al. 2006), and bioerosiias are presented mass loss itkg m?
yr' (e.g., Tribollet and Golubic 2005, Wisshak et al. 2012). To aligmates with literature
data, theserconversiongre followed, but, in order to make them comparable to each other and
to enable the calculation of a net rate,uged percent change in volume of the block to
determine whether blocks were net accreting (positive change) or net eroding (negative change)
Bioerosionandcarbonate production rates were calculated using the following equations
(Silbiger et-al=2016):

Bioerosion rate (kg fyr?) = (AVol; x p;)/(SA; x Time) (1)
Carbonate production ramm yr') =1000 x (AVol;)/(SA; x Time) (2)
wherei representan individual blockAVol; is the volume lost (bioerosion) or gainezhfbonate

production) in m®, SA; is the surface area of thee-deployment blockén?), p; is the skeletal
density of thespre-deployment block (kg®)mandTime is the deployment time (years).
Carbonate’production rates were multiplied by 1000 to convert from m to thiBuyrface area
was calculated from the uCT scdaBowing methods by Leglanet al (2011) Skeletal density
of the blocks was calculatdxy converting intensity valudsom thepCT scango bulk skeletal
densityfollowing methodsn DeCarloet al.(2015).Net accretion rates were calculated as
percent change'in volume per yé8ilbiger et al. 2014):

Netaceretion% y™) =100 X (Volyoseiz — Volyrer1)/(Volprer X Time), (3)
whereVoly,,stc, andVol,,. ., were thepost-deployment and pre-deployment volumes of the
blocks, respectivelyNote that this change in totablume does not depend on the alignment of
pre- and posscans.

2.3 Environmental Data: We compiled23 variableslescribingthe chemical, physicaand
biologicalcharacteristics of each site (Taliefrom NOAA CREP
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(https:/Iwww.pifsc.noaa.gov/credhlawai‘i Department of Aquatic Resources (DARDAA
satellite dataNOAA global wavemodels(WaveWatch IIl) andin situ sampling.Detailed
methods and collection protocols aescribed in the supplemental material.

2.4 Statistical Analysis:

To compare.means at each leve,used a nested analysis of variance (ANOWAth a Tukey
Honestly Significant Difference (HSppst-hoc, where site, island, and region were all fixed
effects.Fo'evaluate the contribution of variance at each spatial scale (sites within islands within
regions) torates of carbonate production, bioerosion, aratoedtion we used a variance
components analysis, where site, island, and region were hierarchical random @#dmsate
productionsandybioerosiaates were both legansformed to meet assumptions of normdoty
all analyses'We used a simple linear regression to test the relationship between bletdrske
density and bioerosion rates, as small differences in skeletal density oodke duld impact
bioerosion rates (Highsmith 1981a), but foudeffect (R 120 = 0.06, p = 0.84).

To determineenvironmental drivers of accreti@rosion rateswve used a model selection
approach bysranking Akaike lofmation Criterion (AIC) weights from simple linear modiels
which the environmatal predictorsvere theindependent variables, and carbonate production,
bioerosionandnetaccretiorrateswere thedependent variableéll environmental data that did
not meet.the assumption of normality were transformed (TabWHi)e it is common to find
nondinear relationships in field data, we did not find any evidence oflim@arity in our dataset.
AIC weights can be interpreted as a relative probabiiherethe model with the highest weight
is themostyprobable of the candidate models (Wagenmakers and Farrell 2O@d3t if the
relationshipsbetween the environmentaldiceors and accretiearosionvalues areonsistent
between regions, we constructed individual models by region and compared the higtiegt-ra
modelsbetween, regions (MHI and NWMNIA principal components analysis (PCA) was used to
visualize the spatial structure of tB8 environmentaparameters
3.RESULIS
3.1 Environmental drivers:

The biologieal, chemical, and physical drivers all varied widely throughout theitdawa

Archipelago(Fig. 2), and there were distinct patterns in environmental conditions across islands

(Fig. 3.
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3.1.1 Biological Divers: Herbivorous fish biomass ranged from 0.4 to 22.8%gith the

highest herbivoroush biomass on Kur@ the protected Papahanaumokuakea Marine National
Monument and lowediiomasson O*‘ahu(Figure 2a) an island with substantiishing pressure
(Williams gt al. 2008)The benthic community also fluctuated widely throughout the Hawaiian
Archipelagowith coralcover varying from 1.3 — 56%cross the 29 sitegth thelowest coral
coveralso enthe island ofO‘ahu (Fig. 2a).

3.1.2. Chemical'Drivers. PO, N+N, and Si ranged from 0.008 — 0.18, 0.066 — 1.79, and 0.83 —
2.45 pmol*(Fig. 2c) respectivelyand TA, DIC, pH, an@aragranged from 2197 — 2387 pmol
kg!, 1985 - 2065 umol kY 7.81 — 8.05, and 2.273-73, respectively, toughout the
Archipelage (Fig. 2d)e Lisianksi the site with the most distinct chemical environment, had the
highest N+N and lowest TA, DIC, pH, afl;ag values.

3.1.3 Physical Drivers: Average wave eneyganged from 22.3 — 45.0 kW fwith the highest
wave energy Ithe northernmost sisg(Fig.2b). The northernmost sites also haddiaeét and
most variable temperatures across the archipeléifponean and standard deviation
temperaturegranging from 23.4 - 25.5 °C and 0825 °C, respectivelfFig.2b).

3.2 Carbonateproduction, bioerosion, and net accretion rates:

3.2.1 Spatial, patterns in carbonate production, bioerosion and net accretion:

Carbonate production, bioerosion, andamdretion rates hadistinctspatial patterns
throughout the Hawaiian Archipelaght the regioml scale, Imerosionrates werg9% higherat
theMHI sitesthanatthe NWHI sitegTable 2, Fig. 4)y while carbonate productiorates were
similar between regions (Table 2, Hg);, averagenetaccretionrwas?2.2 times higher in the
NWHI thansinthe MHI, but the difference was not significafitig. 4eandTable2). At the
island scale, however, there was significant variatiaranmbonate production rates, driven
primarily by exceptionally high carbonate production at Lisianski (nearly double thef kateer
NWHI sites; Table 2, Figdd); netaccretionalso varied by island, with a sirail pattern for
Lisianski (Eig.4f). In cortrast,differences in bioerosion rate at the island scale were marginal
but nonsignificant(Table 2, Fig. 4d). Lisianski had the highest averagacwttion rate, the
highest carbonate production rate, and second lowest bioerosion rate. O‘ahantheiti the
highest population density and the most direct anthropogenic impacts, had the moshhtocks t
were net erode(#16%) and the lowest average aetretion coupled with the second lowest
carbonate productiorate anchighest bioerosion rate (Table)SRastly, ste-level variation was
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significant for all rates (Figlg-i, and Table 253). MauiA27 (Kahekili, Maui), a site impacted
by wastewater effluer{Dailer et al. 2012)had the highest average bioerosion rate (0.35%kg m
y! +0.03) and the lowest net accretion rate (-8.2% +1.97), while LIS18 had the highest
carbonate_production rate (3.68 + 0.57 nif (Fig. 4g4, S2and Table SB

The_ variance components analysis revealed that the highest amount of varidince in a
three rates,were at the finest spatial sc@lable 2) Regionalscale differences contributed to
17.5% of the"variance in bioerosion, but were negligible for carbonate production and net
accretion rateslhereasslandscale differences contributed to 14.5% of the variance in
carbonate production, but only 2.5% in aetretionand <0.1% in bioerosion (Table 2)tes
level differenees contributed to substantially more of the variance in eacxpddeing 14.9%,
34.9%, and“32:1% of the variance in carbonate production, bioerosion, audmedion rates
respectively(Table 2). However, the highest portion of variance in the data was attributed t
smallest (within sites) spatial scale, explainfi®g6% 47.6% and5.3%of the variance for
carbonate productiomjoerosion, and neiccretion, respectivelyrable 2).
3.2.2 Environmental drivers of carbonate production, bioerosion and net accretion:
Carbonateproductioand bioerosion rates always had differ@mi-ranking models indicating
that theyrespond differently to environmental conditions (FandTable$s4 and S5).
Additionally;'the environmental drivediffered between regiorfsr all three ratesHig. 5 and
Tables 8-S6).For carbonate production, the top three models for the NWHI regéeve
carbonate chemistry parametdral alkalinityranked highest and was negativediated to
carbonate productiofAIC,, = 0.40, R = 0.25, Fig. 5b, Table S4). Aragonite saturation state and
pH had similar/AIC weights and®Ralues (Qarag AIC,, = 0.31, R = 0.24, pH: AIG, = 0.28, R
= 0.24, Fig. 5bTable &) and both had surprising negative association wgérbonate
production.For carbonate productiom the MHI, physical and biologicglarameters wenaost
parsimonious, with macroalgae ranked higlaest positively associated witdarbonate
production AlICy = 0.30, B = 0.14, Fig. 5a, Table S4). For bioerosion, biological parameters
werethe topmodels in both the MHI and NWHI regionsig. 5¢,d and Table S5herbivore
biomass Was.theighest-ranking model for thdH! (AIC,, = 0.75, B = 0.28, Fig 5¢c and Table
S5), while benthic covefb other:mainly bare substrate, cyanobacteria, and sessile
invertebratesjanked highesin the NWHI(AIC,, = 0.59, B= 0.11; Fig.  andTableS5).
Lastly, for netaccretiona combination of biological anthemical modelsvasmost informative
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in boththe MHI and NWHI (Fig. 5e, f and Table SEAll hadrelatively equabnd lowweights
(0.16 — 0.24) and AIC values of < 4. Models ranking environmental parameters across the
entireHawaiian Archipelago are lislan Supplemental Fig.3

4 DISCUSSION

4.1 Spatial patternsin carbonate production, bioerosion, and net accretion rates along the
Hawaiian Archipelago

The persistence of coral reefspends on the balance between carbonate prodaciibn
net reef erosioAVhile several studies haexaminedcarbonate production (or calcificatioand
bioerosion rategdependently, this ia broad-scale studhpatassessegatterns ircarbonate
productions bieerosion, and net accretiates in concedndcompare these ratés chemical,
physical, and biologicalrivers acrosspatialscales.

Carbonate producticand bioerosion rates were associated with different drivers at both
regional and archipelagic scal&sior studies have also found distinct driversarbonate
production.and erosion: for exampédijne-scalein situ study showed thdtioerosion was most
correlatedswithypH whilearbonate productiowas most correlated with distance from shore
(Silbiger et-al»2016)-urther,carbonate production and erosion have been shown to have
different responses to the same environmental parameters, chiefly pH, frelobtBarkley et
al. 2015, Enochs et al. 2016, Silbiger et al. 2016) and laboratory (Silbiger and Donahue 2015)
studiesNet accretion was driven by a combination of the dominant drivers for carbonate
production.and bioerosiomhich is expecte@s net accretion is a composite of carbonate
productionsand,bioerosion.

Wewere surprised that thisoad-scale study did not show a strong relationship between
carbonate chersiry parameters and bioerosj@s several studies show a clear relationship
between pH and bioerosion (Tribollet et al. 2009, Wisshak et al. 2012, Fang et al. 2013, Reyes-
Nivia et al,.2013, Wisshak et al. 2013, Silbiger et al. 2014, Barkley et al. 2015, DeCérlo et a
2015, Silbiger.and Donahue 201&prbonate chemistry parameters were in therémiing
models for.earbonate productionthe NWHI,but theyalsohad asurprising negative
relationshipsfoiboth pH and Qarag Opposite of whais expectedbased on prior studies (e.g.,
Hoegh-Guldberg et al. 2007). In addition, nutrients were not in the top-ranking models for
bioerosion, althoughutrientsare a important driver of reef bioerosion (e.g., Carresibra et
al. 2005, DeCarlo et al. 2015). Silica, however, was in the top three models for bioerosion in
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both regions. Excavating sponges have a siliceous skeleton; thus, sponge bioerosiondates cou
be sensitive to silica concentratiofifiere are a few possible explanations for these surprising
resultsin the chemical parameters) It is likely other unmeasureddlinear parameters are
driving the negativeelationshipbetween carbonate production and gl All reef sitesfor
which we had.nutrient dataere oligdrophic (0.066 - 1.8 pmolt); thus,the range of nitrate
was inadequatt® elicit a nutient responsén bioerosion3) Nutrient data was unavailable for
site with'the"highest bioerosion rates (Kahekili, Mabilaui A27); a site known to bmpacted
by wastewatereffluer{Dailer et al. 2012and likelywith high nutrient concentrations. #he
chemistry datdnad low replication (1-3 points) collected between spring and summer during
daylight hoursswhich ignores the high temporal variability in water chemistry on cora{eegfs
Guadayol et ali 2014). Prior studies have shown that diel variabilitybomrate chemistris an
important driver of carbonate production on coral reefs (Price et al. Z201i2)ow replication
reflects the only data publicly available for these very remote sites. However, a pr&vidys
over broad.spatial scales used similarly sparsgu chemistrydata andound significant
relationshipstbetween bioerosion and water chemiBeZarlo et al. 2015).)5 he stronglirect
and indirect effects dierbivoregrazingmaybe swamping or interacting with the effects
carbonateschemistry and nutrieots bioerosion rate©verall, the drivers cdccretionerosion
rateswere.multifactorial highlighing themanyinteractingfactorsthatinfluenceaccretion
erosion ratesf coral reefs.

Biological parameters ranked highest in five out ofdixanodel selection analyses.
Specifically;ferbivorous fish was the highest-ranking model in the KtiHbioerosionand
benthic coverdescriptoranked highest for carbonate production in the MHI, bioerosion in the
NWHI, and net accretion in both regiolenthic cover, specifically the amount of dead
substrate on a reef, could inflieEnbioerosion rates, as bioeroders prefer dead substrate over live
reef(Highsmith 1981b, Hutchings 1986). Herbivorous fish can directly influence bioerosion by
removing CaC@ substrate while grazing for algé=g., Bellwood 1995, Ong and Holland
2010), and.they can indirectly influensettlement and growth of calcifieby removing fleshy
algae and relieving competitive interactions with C{@&brian and Uriz 2006, Cebrian 2010,
O'Leary and McClanahan 2010, Gonzalez-Rivero et al. 261L2her, the interaction between
benthic community composition and herbivorous fish can influence bioerosioneatessb the
presence of secondary calcifiers, mainly CCA, can inhibit the settlement of bioeroders by sealing
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363 off the substrate and making it difficult for borers to penetrate (White 1980, TtiaotePayri

364 2001).A prior field studysuggested that grazer abundance cmddiatethe relationship

365 between accretion and pH as they saw a positive relationship between pH and accretion at one
366 CO, vent site and no relationship at a site with higher grazer abundance (Enochs et al. 2016).
367 Our results.suggest that herbivorous hstve a negativindirecteffect onbioerosion rates:

368 bioerosionirates decreased with increasing herbivorous fish biohiessrong negative effect

369 of herbivorous-fistbiomass a bioerosion rates is important for coral reef managers: managing
370 for herbiveroeustish could mitigate excessive bioerosion.

371 Amongthe physical parameters, mean and maximum SST iwéhetop-ranking

372 models forcarbonate productionthe MHI. Carbonate productiaren varyas a function of

373 temperature due to its effects on both chemical and biological pro¢kigasand Hallock

374 2003).Across all modelshe top five highest-ranking models often R&IC values of <4

375 (Table S-S6), indicating empirical support for several of the environmearameterand,

376 thus,evidence for multiple factors interau to affectthe accretiorerosion balancef coral

377 reefs

378 In addition to different drivers between carbonate produetiwherosion rates, the

379 dominantdrivers for carbonate production, bioerosion, and net aconatieralways different

380 between.thetwoegions. There are several possible explanations for these differdrices

381 there are different ranges in the environmental parameters gagyiog oceanographic

382 conditions.and human-influences between the two regions. For exdhgskewas muchlarger

383 range in the*carbonate chemysitn the NWHI than in the MHI whit wasmostly driven by

384 Lisianksi Island(Fig. 2d,e, 3a)interestingly, Lisianski also had a substantially higlagbonate

385 productionrate than théive other islands/atolls (Figia). Unlike other atolls in the NWHI,

386 Lisianski is an aopen atoll with reticulate reef separating lagoon and fordraefgnique

387 geomorphology, may underlie the distinct physicochemical environment (Fig 3a) and carbonate
388 production rates (Fig 4lat Lisianski There were considerable differences in fish biomass

389 Dbetween theitwo regions due to varying fishing pres@fiiams et al. 2008, Williams et al.

390 2010),likelysdriving the difference in the relative importance of herbivorous fish between the
391 MHI and NWHI. Prior studies have also found dissimilar relationships betwagironmental

392 drivers and coral regfrocessebetween regiond-or example, a Pacific Basin study

393 demonstrated that the relationship between environmental models and reef characteristics (coral,
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CCA, and macroalgal cover) were not consistent acrose fpaitiams et al. 2015)Williams et
al. (2015) split sites between populated and unpopulated islands, found that biophysical
parameters had higher explanatory power at unpopulated islands, and concludedlthat loc
human impacts_decouple biophysical relationships on coral reefs. The MHI vé&ksdis N
comparisonsis,similarly populated versus unpopulated, and differences betigsarosid be
driven by lecalfhhuman impacts; however, there are also several other major differences between
these regions'that may be more directly related (e.g., high vs low islands, benthic habita
differences,"ete’).

Variability in carbonate production, bioerosion, and net accretion were all highlest a
local scaleForall factors investigated here, the smallest scale of variation (within sites)
contributed*much moreariance than any other spatial scale in this stindlygating that
individual blocks within a site were more different than blocks 2500 km dpisrimportant to
notethat the site scale is the residual variance and, therefore, includes aftdlbdokk
variability within a site including both spatial variability within each site and any differences
between thegblocks themselves. While our rate calculatiomsalized for differences between
blocks in velume and surface area, and we found no effestteletal density, other differences
betweenblocks, such as differences in surface roughoregariability in theuCT
measurementsvouldalsocontribute to withirsite variability Prior studies have also seen
exceptionally high withirsite variabilty in bioerosion rates. A recent study in Kane‘ohe Bay,
Hawai‘i saw a nearly 2 order of magnitude change in bioerosion rates across a-short 34
transec(Silbiger et al. 2016) — variability that was greater than a study comparing bowerosi
rates across:the Pacific (DeCarlo et al. 2015). Furtiedpw explanatory power @il
environméntal models (highest Ralue was 0.28)flectaresponse to the high local variability
in accretionerosion data. Prior studies examining within site environmental variability and
accretionerosion rates had markedly higher explanatory power between ac&eifion rates
and environmental parameté&ilbiger et al. 2014, Silbiger et al. 2018Yhile both broad and
local scale.gradients in biological and physicochemical drivers clearly interact to shape patterns
in the accretioferosion balance, this study provides compelling evidence that local vayiebili
particularly important.

There are some limitations to this study that should be considered when timtgripre
results. First, the temporal scaledlué environmental variables differ and, particularly in the
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case of water chemistry, are disconnected from the block deployment period (T aleé S7).
Second, the highest spatial resolution of the environmental data was a teeddjtbut the
majority of the variance in the accretierosion data was within sites. Monitoring protocols are
typically in place to track broad environmental trends; however, a better undergtaf local-
scale variability is necessary to predict how environmental change will impact the aecretion
erosion balance. Thirthecausehte blocks were deployed for one year, the results are based on
an early'successional communigtudies have shown that bioeroder community composition
and bioerosionrates change over time in CaBlock experiments (e.g., Hutchings et al. 1992,
Tribollet and Golubic 2005). For example, several species of boring polychaetes have shown
increased secruitment over a onaéwo-yeardeployment period followed by a decline, while
eunicids, sipunculans, and bivalves continuoustyeased over @ur-yearperiodin Australia
(Hutchings et al 1992). Another study demonstrated that bioerosion rates onl$lenaaigl
Australia wee 0.71, 0.11, and 0.32 kgy™* after a one-year exposure for microborers,
macroborers, and grazers, respectively. After 3 years of expasaregbioerosion ratesere 3x
higher (Triballet and Golubic 2005)s bioeroding species respond differently to environmental
conditions and-erodat different rate¢e.g., Hutchings 1986, Hutchings et al. 1992, Hutchings
and Peyrot-Clausade 2002, Tribollet and Golubic 20&)deployrent length could have
impacted.the results of this studyastly, our analysisdid not separatbioerosiorrates by
functional groups. Future studies should address the effect of multiple chemicalaplarsil
biological divers of bioerosion functional grouggsmultiple successional stages
4.2 Conclusions

Despitethe limitations, this is the highest resolution analysis that allows for the
simultaneous measurementoairbonate production, bioerosion, and net accrétmn the same
experimental substrate and correlates these rates with a suite of chemical, physical, and
biological parameters, and the first study to use uCT to quantify carbonate production,
bioerosion.and/netccretiorrates over large spatial scal€ur results and those from previous
studieq(Silbiger et al. 2014, Silbiger et al. 2016) provide compelling evidentéotteatscale
environmental.variability is particularly important to the coral reef accretiorion balance. We
also demonstrated that the relationships between explanatory and responsesvanéaibt
consistent across space, as there were differemt¢les highestanking environmental models
between the MHI and NWHI datasete differing relationships between environmental
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variability and accretiomrosion data should be taken into consideration when interpreting those
results and in future managent decisions on coral reefs.
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Table 1:Environmental parameters: Environmental parameters group@g cyemical,(b) physical,(c) and biological drivers.

Parameters are parameter type, transformation is how theveletanormalized, data source is the agency, satellite, or model source for the

data, and method is collection method for each parameter.

(a) Chemical

(b) Physieal

(c) Biological

Parameters

PO,*

Si

NO3z + NOy

Qarag

pH

Total Alkalinity (salinity normalized)

Dissolved Inorganic Carbon (salinity normalized)

Depth

Mean Sea Surface Temperature

Maximum Sea Surface Temperature

Minimum Sea Surface Temperature

Standard Deviation of Sea Surface Temperature
Mean Wave Energy

Maximum Wave Energy

Sum of Wave Energy

Standard Deviation Wave Energy

Fishherbivore biomass

% Coral cover

This article is protected by copyright. All rights reserved

Abbreviation

PO
Si
N+N
Qarag
pH
TA
DIC

Depth
mean(SST)
max(SST)
min(SST)
std(SST)
mean(energy)
max(energy)
sum(energy)

std(energy)

Herb

% Coral

Transformation

log(X)
log(X)
log(X)
log(X)
log(X)
log(X)
log(X)

NA
NA
NA
NA
log(X)
log(X)
log(X)
NA

log(X)

log(X)
log(X+1)

Data Source

CREP/Silbiget
CREP/Silbiget
CREP/Silbiget
CREP/Silbiget
CREP/Silbiget
CREP/Silbiget
CREP/Silbiget

CREP

G1SST
G1SST
G1SST
G1SST

Wave WatcHll
Wave Watch IlI
Wave Watch IlI

Wave Watch Il

CREP/DAR
CREP/DAR

Method

Water Sample
Water Sample
Water Sample
CO2SYS
CO2SYS
Water Sample

Water Sample

Dive computer
Satellite
Satellite
Satellite
Satellite
Satellite
Satellite
Satellite

Satellite

BLT/nSPC
LPI/Photoquad




% Calcified algae % Calg log(X+1) CREP/DAR
% Macroalgae % Malg log(X+1) CREP/DAR
% Turf algae % Talg log(X+1) CREP/DAR
% Sand % Sand log(X+1) CREP/DAR
% Other % Other log(X+1) CREP/DAR

LPI/Photoquad
LPI/Photoquad
LPI/Photoquad
LPI/Photoquad
LPI/Photoquad

! Silbiger collected nutrient samples at all O‘ahu sites and carbonate chemistry samajplesat sites and OahuKB and OaHJKAIl
other data was collected by CREP. There is currently no nutrient data availabkeié2Vl

% MauiA27-fish and benthic data was collected by DAR and all other data was collected By CRE

% Data was collected using LPI at all sites except for OahuKBay, OahuKN, Oahu10, Oahu4, ak@7Maui

Table 2: Hierarchical ANOVA fo(a) carbonate productioifb) bioerosion, andc) net accretion

ratesacross,regions, islands, and sites. DF is degrees of freedom, SS is sum of squares,idean SS

mean sum.of.squares, F is th¢eBt, and p is the-palue. Percent variance is from a variance

components-analysis, where site, island, and region were hierarchical random effdotalugxd

represent statistically significant differences.

Model DF SS MeanSS F p % Variance

a) Carbonate Production

Region 1 0.025 0.25 1.26 0.27 <0.1%
Island:Region 4 5.48 1.37 7.03 <0.001 14.50%
Site:lsland:Region 23 8.55 0.37 191 0.01 14.90%
Residuals/Within Site 93 18.11 0.19 70.60%

b) Bioerosion
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Region
Island:Region
Site:Island:Region

Residuals/Within Site

c) Net Aceretion

Region
Island:Region
Site:Island:Region

Residuals/\Within Site

1
4
23
93

21
93

7.15
3.41
35.6
32.96

65.1
374.2
1641.7
2215.1

7.15
0.85
1.55
0.35

65.14
93.56
71.38
23.57

20.18 <0.001
24  0.055
4.37 <0.001

2.76 0.1
3.97 0.005
3.03 <0.001

17.50%
<0.1%
34.90%
47.60%

<0.1%
2.50%
32.10%
65.30%
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Figure Legend:

Figure 1: Map of 29 forereef sites across the Hawaiian Archipelagd@op inset shows the
extent of the Hawaiian Archipelago. Maui a@thhu are in the Main Hawaiian Islands region
and French-Frigate Shoals, Lisianksi Atoll, Pearl and Hermes Atoll, and Koiteare in the
Northwestérn Hawaiian Islands region in the Papahanaumokuakea Marine National Monument.
Green areas are land. Red dots are individual sites. Grey areas in magfmrbd@ihymetry
data from'NOAA CREP.

Figure 2: Summary of environmental data for (a) biological, (b) physical, and (e)

chemical drivers. (a) Benthic cover is the mean % cover of the benthic communigll fdata

collected between 2010 — 2012 at each site. (a) Herbivore fish biomaS} ggenthe means +

SE for all available data between 20002014 at each site. In the physical data plot (b), black

and red bars répresent the ranges for temperaturarf®Gyave energy (kW ), respectively,

and the dots are the mean values. The chemistry plots show mean values for (c) PO, Si, and N+N
in pmol LY, (d) PA (uEq kg™, DIC (umol kg™), and Qarag (colors), and (e) pH for all data

available between 2008 — 2014 at each site. The sites are ordered from south to north. All

parameters and data sources are listed in Table 1.

Figure 3: Principal components analysis (PCA) of the environmental datdhe PCA is a
combination of all environmental parameters collected (Table 1). Panel (a) are the PC scores of
each site and panel (b) are the loadings of each environmental parameteaxis the first
principal component and y-axis is the second principal component. Numbers in parentheses ar

the percent,of varianaxplained by each PC axis. Polygons outline data from individual islands.

Figure 4: Means + SE for (a,d,g) carbonate production, (b,e,h) bioerosion, and (©,inet
accretion rates across (a,b,c) regions, (d,e,f) islands, and sites (g,or net acaztion,
positive'values were net accreting while sites with negative values were net eroding over the
deployment period. Sites are show in order of latitude. Data were log-transforrhedamatysis
and were backransformed in this figure. ANOVA resulterfthis figure are in Table 2. Letters

are from pairwise comparisons from a TukeyHSD asttest and means with different letters
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are statistically different from each other (pairwise comparisons felesigédata are in Table
S3).

Figure 5: AIC weights (AICw) for environmental parameters versus (a,b) carbonate
production,.(e;d) bioerosion, and (e,f) net accretion for (a,c,e) the MHI, and (d,b,f) the
NWHI. Each inset shows the top three highest ranking models for each model selection with
bars repres#ing individual environmental models. Signs next to bars represent positive (+) or
negative {)y relationships between environmental drivers and the accretosion rates. Full
model selections are available in TablesSE3 X-axes are the AICw valuesthil being the

model withstheshighest weight. Bar colors represent environmental driver groups.
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